

www.entertainmentriggingservices.com

ERS

- 10^{\prime} tall by 30^{\prime} wide banner on a truss goalpost.
- Top edge at 25^{\prime} from the ground.
- The wind is gusting at 40 MPH .

ENTERTAINMENT

Standard Definitions Reference points

- $\boldsymbol{A}(\mathbf{n})=$ Anchorage (n is the anchorage number)
- $\boldsymbol{P}=$ The point at which the force is applied
- $\boldsymbol{O}=$ The origin of a force vector
- $\boldsymbol{T}=$ The termination of a force vector

Distances

- $\boldsymbol{S}=$ The horizontal distance between anchorages. This distance is also commonly referred to as Span.
- $\boldsymbol{D}(\mathrm{n})=$ The horizontal distance from anchorage (n), where (n) is the anchorage number, to the applied force. This form is only used when all distances are horizontal.
- $\boldsymbol{D V}=$ The vertical distance between the anchorages of a bridle and the bridle point. This form can only be used when all anchorages are at the same height.
- $\boldsymbol{D Z}$ = An alternative to $\boldsymbol{D V}$. Used if the Cartesian coordinate system is being used to describe points.

Standard Definitions

Distances

- $\boldsymbol{D}(\mathrm{n})(\boldsymbol{x})=$ The distance from anchorage (\mathbf{n}), where (\mathbf{n}) is the anchorage number, to the applied force in the direction (\mathbf{x}). The direction (\mathbf{x}) would be one of the following:
- $\boldsymbol{H}=$ Horizontal in-line with the bridle leg
- $\boldsymbol{V}=$ Vertical
- $\boldsymbol{X}=\ln$ the x -axis
- $\boldsymbol{Y}=\ln$ the y -axis
- $\quad Z=\ln$ the z -axis
- $L=\ln$-line with the bridle leg

Distances

ENTERTAINMENT

Forces

- $\boldsymbol{F A}=$ The applied force
- $F A(x)=A$ component of the applied force in the direction (\mathbf{x}).
- The direction (\mathbf{x}) would be one of the following:
- $\boldsymbol{H}=$ Horizontal in-line with the applied force
- V = Vertical
- $\boldsymbol{X}=\ln$ the x -axis
- $\boldsymbol{Y}=\ln$ the y-axis
- $Z=\ln$ the z-axis

Standard Definitions

Forces

- $\boldsymbol{F}(\mathbf{n})=$ The vertical force at anchorage (n), where (n) is the anchorage number. This form is used only when all forces being analyzed are vertical.
- $F(n)(x)=$ The force at anchorage (n), where (n) is the anchorage number, in the direction (x). The direction (x) would be one of the following:
- $L=$ In-line with the bridle leg
- $\boldsymbol{H}=$ Horizontal in-line with the bridle leg
- V = Vertical
- $\boldsymbol{X}=\ln$ the x -axis
- $\boldsymbol{Y}=\ln$ the y-axis
- $\mathbf{Z}=\ln$ the z -axis

Forces

ENTERTAINMENT

Standard Definit Angles

- $\boldsymbol{a}(\mathbf{n})=$ The angle between the bridle leg and horizontal at point
- $\boldsymbol{A}(\mathbf{n})$, where (\mathbf{n}) is the anchorage number.
- $\boldsymbol{a}(\boldsymbol{n}) \boldsymbol{r}=$ The angle of rotation of the bridle leg around $\boldsymbol{A}(\mathbf{n})$, where (\mathbf{n}) is the anchorage number.
- $\boldsymbol{p}(\mathbf{n})=$ The angle between the anchorage and vertical at point \boldsymbol{P}, where (\mathbf{n}) is the anchorage number.
- $\boldsymbol{p}=$ the angle between the bridle legs with a base at \boldsymbol{P}.
- $\boldsymbol{o}=$ The acute angle between FA and horizontal with a base at \boldsymbol{O}.
- or = The angle of rotation of the force around \boldsymbol{O}.
- $\boldsymbol{t}=$ The acute angle between FA and vertical with a base at \boldsymbol{T}.

Order of Operation

PEMDAS

Rule 1: First perform any calculations inside parentheses.
Rule 2: Next perform all exponents, working from left to right.
Rule 3: Next perform all multiplications and divisions, working from left to right.
Rule 4: Lastly, perform all additions and subtractions, working from left to right.

$$
7 \times 2+(7+3 \times(5-2)) \div 4 \times 2
$$

ENTERTAINMENT

Newton's First Law

Every body persists in its state of being at rest or of moving uniformly straight forward, except insofar as it is compelled to change its state by force impressed

Newton's First Law

An object that is at rest will stay at rest unless an unbalanced force acts upon it.
$\underset{\text { ENGERTAINMENT SERVICES... }}{\text { ENT }}$

Basic Engineering Principles

Pythagorean Theorem

$A^{2}+B^{2}=C^{2}$

$$
\frac{\text { Force } \mathrm{L}}{\text { Force } \mathrm{V}}=\frac{\text { Length } \mathrm{L}}{\text { Length } \mathrm{V}}
$$

Basic Engineering Principles

Force $\mathrm{L}=\frac{\text { Length } \mathrm{L}}{\text { Length } \mathrm{V}}$ (Force V)

- A single concentrated load on a truss, batten, Etc.
- Moving Lights
- Projectors
- Audio
- Other rigging
- Know as PL

ENTERTAINMENT

Uniformly Distributed Loads

- Multiple point loads that are evenly spaced along a span
- Lighting Fixtures
- Truss Self Weight
- Cable
- Drape
- Know as UDL
$\underset{\text { ENTERTAINMENT }}{\text { RIGGING SERVICESNT }}$

Uniformly Distributed Loads
 UDL

Uniformly Distributed Loads
 UDL can be treated as a PL centered between the suspensions

PL

FA

The total weight to be placed on the cantilevered truss must be Less than the allowable CPL for a span (4) times the length of the Cantilever.

ENTERTAINMENT

						$\nabla \nabla$		$\nabla \nabla \nabla$	
	Uniform Loads			Center Pt Load		Third Pt. Load		Quarter Pt. Load	
	load (pif)	load (lbs)	defl (in)	load (lbs)	defl (in)	Ioad (lbs)	defl (in)	Ioad (lbs)	defl (in)
5	817	4085	0.016	2398	0.015	1199	0.012	1182	0.017
10	406	4060	0.124	2372	0.116	1186	0.099	1174	0.136
15	262	3930	0.409	1965	0.329	1173	0.334	982	0.389
20	145	2903	0.727	1451	0.587	1089	0.743	726	0.692
25	91	2276	1.136	1138	0.921	854	1.160	569	1.083
30	62	1850	1.636	925	1.334	694	1.670	463	1.561
35	44	1538	2227	769	1.828	577	2.272	385	2.127
40	24	950	2.235	475	1.867	356	2.276	238	2.143

ENTERTAINMENT

Resultant Loads

What is a Resultant load?

Resultant Load

Resultant Loads

Using Resultants to figure out loads on beams

Complex Structures

What happens when we add a suspension point?
$\underset{\text { ENTERTAING SERVICES... }}{\text { ENT }}$

So why not just use the Mathematical solution?

The process for calculating the loads uses the Three Moment Theorem, which is not very practical in the field due to the complexity of the math

> Use a "Rule of Thumb"

Harry Donovan figured out that the biggest difference between intuition and the mathematically correct answer on a structure with 3 suspensions is 25% and a structure with 4 or more suspensions is 14%

Complex Structures

Rule of Thumb for 4 or more suspensions . 5 Span Span + 14\% Span + 14\% . 5 Span

What happens when we add a Point Load?

We can use the simple span equation in combination with the "Rule of Thumb"

2 Workers on this horizontal lift line.

$$
40^{\prime} \quad \text { Deflection }=1 / 20 \text { of span }
$$

$$
\begin{aligned}
& L_{1}=\sqrt{\left(X_{1}-X_{4}\right)^{2}+\left(Y_{1}-Y_{4}\right)^{2}+\left(Z_{1}-Z_{4}\right)^{2}} \\
& L_{2}=\sqrt{\left(X_{2}-X_{4}\right)^{2}+\left(Y_{2}-Y_{4}\right)^{2}+\left(Z_{2}-Z_{4}\right)^{2}} \\
& L_{3}=\sqrt{\left(X_{3}-X_{4}\right)^{2}+\left(Y_{3}-Y_{4}\right)^{2}+\left(Z_{3}-Z_{4}\right)^{2}}
\end{aligned}
$$

3 leg Bridles

$$
\begin{array}{lll}
N_{1 X}=\frac{X_{1}-X_{4}}{L_{1}} & N_{1 Y}=\frac{Y_{1}-Y_{4}}{L_{1}} & N_{1 Z}=\frac{Z_{1}-Z_{4}}{L_{1}} \\
N_{2 X}=\frac{X_{2}-X_{4}}{L_{2}} & N_{2 Y}=\frac{Y_{2}-Y_{4}}{L_{2}} & N_{2 Z}=\frac{Z_{2}-Z_{4}}{L_{2}} \\
N_{3 X}=\frac{X_{3}-X_{4}}{L_{3}} & N_{3 Y}=\frac{Y_{3}-Y_{4}}{L_{3}} & N_{3 Z}=\frac{Z_{3}-Z_{4}}{L_{3}}
\end{array}
$$

$$
\begin{aligned}
& D=\left(N_{1 X}\right)\left(N_{2 Y}\right)\left(N_{3 Z}\right)+\left(N_{2 X}\right)\left(N_{3 Y}\right)\left(N_{1 Z}\right)+\left(N_{1 Y}\right)\left(N_{2 Z}\right)\left(N_{3 X}\right) \\
& -\left(N_{3 X}\right)\left(N_{2 Y}\right)\left(N_{1 Z}\right)-\left(N_{3 Y}\right)\left(N_{2 Z}\right)\left(N_{1 X}\right)-\left(N_{2 X}\right)\left(N_{1 Y}\right)\left(N_{3 Z}\right)
\end{aligned}
$$

$$
\begin{aligned}
& F_{1} L=\left(\left(N_{2 X}\right)\left(N_{3 Y}\right)-\left(N_{3 X}\right)\left(N_{2 Y}\right)\right)\left(\frac{F A}{D}\right) \\
& F_{2} L=\left(\left(N_{3 X}\right)\left(N_{1 Y}\right)-\left(N_{1 X}\right)\left(N_{3 Y}\right)\right)\left(\frac{F A}{D}\right) \\
& F_{3} L=\left(\left(N_{1 X}\right)\left(N_{2 Y}\right)-\left(N_{2 X}\right)\left(N_{1 Y}\right)\right)\left(\frac{F A}{D}\right)
\end{aligned}
$$

- Vectors offer an alternative to Algebra
- Helps to visualize the forces
- Slower to calculate loads
- Not as Accurate

Vectors

